Facoltà di ECONOMIA - Università di Pavia

29 Giugno 2004

Prova scritta di Statistica (Istituzioni), di Statistica 1 e di Statistica 1 (Elementi di Probabilità e di Inferenza)

Modalità A

Memoranda

- Riportare sul foglio nome, cognome e numero di matricola
- Gli studenti immatricolati nell'a.a. 1999-2000 o negli anni accademici precedenti devono rispondere alle Domande di "Teoria", svolgere l'Esercizio 1 e **uno** a scelta tra gli Esercizi 2 e 3.
- Gli studenti immatricolati nell'a.a. 2000-2001 devono rispondere alle Domande di "Teoria" e svolgere **entrambi** gli Esercizi 2 e 3.

DOMANDE DI "TEORIA". (10 punti)

- a) Sia X una variabile aleatoria distribuita secondo una legge di Poisson di parametro
 2. Si descriva la funzione di probabilità di X.
- b) Sia X_1, \ldots, X_{16} un campione casuale estratto da una popolazione X con ditribuzione $N(\mu, 4)$, dove μ è incognito. Determinare la lunghezza di un intervallo di confidenza per μ di livello $1 \alpha = 0.9$.
- c) Sia $X_1,...,X_n$ un campione casuale estratto da una popolazione X la cui legge di probabilità dipende da un parametro incognito $\theta \in \Theta \subset \mathbb{R}$. Si fornisca la definizione di stimatore consistente in senso forte (o in media quadratica) di θ .

ESERCIZIO 1. – STATISTICA DESCRITTIVA (10 punti)

Siano X e Y due variabili statistiche (relative a due caratteri quantitativi distinti) la cui distribuzione di frequenza congiunta è riassunta nella seguente tabella a doppia entrata

X/Y	0	2	4
-1	0.15	0	0.05
0	0	0.1	0.2
1	0.4	0	0.1

- a) Determinare la funzione di ripartizione di X.
- **b)** Calcolare Cov(X, Y).
- c) Determinare $Fr(-0.1 < X \le 1)$.

ESERCIZIO 2. – PROBABILITÀ (10 punti)

In condizioni normali di utilizzo, è necessario che trascorrano (mediamente) 6 anni prima che il tubo catodico di un televisore prodotto dall'azienda TVcolor si rompa. Si indichi con X la variabile aleatoria rappresentativa della durata di vita (in anni) del tubo catodico di un televisore e si ipotizzi che X si distribuisce secondo una legge esponenziale negativa.

- a) Determinare la funzione di ripartizione di X.
- b) Calcolare la probabilità che la durata sia superiore a 5 anni.
- c) Su un lotto di 225 televisori venduti dall'azienda TVcolor, qual è la probabilità per 100 di essi il tubo catodico abbia una durata superiore ai 5 anni?

ESERCIZIO 3. – INFERENZA (10 punti)

Sia X_1, \ldots, X_n un campione casuale estratto da una popolazione X distribuita secondo una legge esponenziale negativa di parametro $\theta > 0$.

- a) Si determini lo stimatore di massima verosimiglianza di $h(\theta) = 1/\theta$.
- **b)** Calcolare la distorsione dello stimatore di massima verosimiglianza individuato al punto a).
- c) Per stimare $h(\theta) = 1/\theta$ è stato alternativamente proposto $T' = \frac{1}{n}(X_1 + (n-1)X_n)$. Quale dei due stimatori, tra quello di massima verosimiglianza e T', preferireste per stimare $h(\theta)$? (Motivare la risposta).