Facoltà di ECONOMIA - Università di Pavia

12 Giugno 2001 – Prova scritta di Statistica 1 e di Statistica 1 (Elementi di Probabilità e di Inferenza)

Modalità B

Memorandum.

- Gli studenti immatricolati nell'a.a. 1999-2000 o negli anni accademici precedenti devono rispondere alle Domande di "Teoria", svolgere l'Esercizio 1 e **uno** a scelta tra gli Esercizi 2 e 3.
- Gli studenti immatricolati nell'a.a. 2000-2001 devono rispondere alle Domande di "Teoria" e svolgere **entrambi** gli Esercizi 2 e 3.

DOMANDE DI "TEORIA". (9 punti)

- a) Quando due eventi A e B si dicono indipendenti?
- b) Enunciare il Teorema di Bayes.
- c) Sia $T_n = T(X_1, ..., X_n)$ uno stimatore di $\tau(\theta)$ tale che $\text{Var}_{\theta}(T_n) < +\infty$. Dimostrare la validità della seguente relazione

$$E_{\theta}(T_n - \tau(\theta))^2 = \operatorname{Var}_{\theta}(T_n) + (E_{\theta}(T_n) - \tau(\theta))^2.$$

ESERCIZIO 1. – STATISTICA DESCRITTIVA (8 punti)

Siano X e Y due variabili statistiche la cui distribuzione congiunta è rappresentata mediante la seguente tabella a doppia entrata

X/Y	0	2	3
1	-	0.15	0.05
3	0.25	-	0.25
5	Ī	0.05	0.25

- a) Calcolare M(X) e M(Y).
- b) Determinare la funzione di regressione di Y su X.
- c) Calcolare il coefficiente di correlazione lineare $\rho(X,Y)$.

ESERCIZIO 2. – PROBABILITÀ (8 punti)

Da un osservatorio astronomico è possibile rilevare la distanza (espressa in una opportuna unità di misura) tra la Terra ed una stella di recente scoperta. A causa dell'imprecisione dello strumento di misura è opportuno considerare la distanza come una variabile aleatoria X. Si ipotizzi che $X \sim N(9; 0.25)$.

- a) Qual è la probabilità di rilevare un valore della distanza superiore a 9.13?
- b) La distanza tra la Terra e la stella verrà rilevata in 4 giorni giorni diversi della settimana. Qual è la probabilità che esattamente in 2 dei 4 giorni in questione verrà riscontrata una distanza superiore a 9.13?
- c) Sia \bar{X}_4 la media campionaria delle distanze rilevate nei quattro giorni di osservazione. Qual è la probabilità che tale media campionaria sia maggiore di 9.13?

ESERCIZIO 3. – INFERENZA (8 punti)

Sia X_1, X_2, X_3, X_4 un campione casuale estratto da una popolazione normale con media μ e varianza $\sigma^2 = 0.16$. Per verificare l'ipotesi

$$H_0: \mu = 2$$
 vs $H_1: \mu = 3$,

è stata proposta la seguente regione di rifiuto

$$\mathcal{R} = \{(x_1, x_2, x_3, x_4) : \bar{x}_4 \ge 2.43\}.$$

- a) Calcolare la probabilità di errore di prima specie associata al test.
- b) Calcolare la probabilità di errore di seconda specie.
- c) Avendo osservato il campione $x_1 = 0.7$, $x_2 = 1.2$, $x_3 = 2.95$ e $x_4 = 0.08$, accettereste o rifiutereste H_0 ?