Compito di matematica secondo modulo - 29 Marzo 2004 - A

Nome: Matricola:

- Non sono ammesse calcolatrici
- Rispondere barrando o cerchiando chiaramente una e una sola lettera
 - 1. La funzione y = f(x) é crescente in $(-\infty, 1)$, decrescente su $(1, +\infty)$ e > 1 su $(-\infty, +\infty)$. Determinare dove la funzione $f^2 - 2f$ é crescente:

 $\mathbf{A}: (-\infty, -1)$

B: $(1, +\infty)$ **C**: $(-\infty, 1)$ **D**: $(-1, +\infty)$

2. Calcolare i seguenti limiti:

 $\lim_{x \to +\infty} \frac{3x^2 + x}{x(x+1 + \ln(x))}$ **A**: $+\infty$ **B**: 3 **C**: $-\infty$

 \mathbf{D} : 0

$$\lim_{x \to -\infty} \frac{x^2 + x}{e^{-2x}}$$
 A: 0 **B**: $+\infty$ **C**: 1 **D**: $-\infty$

$$\lim_{x \to +\infty} e^{\frac{\ln x}{\sqrt{x}}}$$

 \mathbf{A} : $-\infty$ \mathbf{B} : 0 \mathbf{C} : $+\infty$

D: 1

$$\lim_{x \to +\infty} \frac{x \ln(x^6 - 7\ln(x))}{e^{\frac{1}{2x}}}$$

 \mathbf{A} : $+\infty$ \mathbf{B} : 0

 \mathbf{C} : e

 \mathbf{D} : $-\infty$

3. La soluzione dell'equazione $e^{2\ln(x+1)} = 3$ è:

A: $x = \ln(3/e)$ **B**: $x = \frac{1}{2}\ln(\ln 2)$ **C**: $x = 2\ln(\ln 2)$ **D**: $x = -1 \pm \sqrt{3}$

4. La derivata di $f(x) = e^{x \ln(x)}$ è

A: $f'(x) = e^{x \ln(x)}$ **B**: $f'(x) = \frac{1}{x \ln(x)}$ **C**: $f'(x) = [\ln(x) + 1]e^{x \ln(x)}$

 $\mathbf{D}: f'(x) = \frac{1}{x \ln(x)} e^{x \ln(x)}$

5. L'equazione della tangente al grafico della funzione $f(x) = e^x \ln(x)$ in P = (1, f(1)) è:

A: $y = (x-1)(e^x \ln(x) + \frac{1}{x}e^1)$ **B**: y = e(x-1) **C**: $y = e^x \ln(x) + e(x-1)$ **D**: y = ex

6. Stabilire per quali x é definita e soddisfatta la disuguaglianza $\frac{x^2-1}{(x+2)e^{x^2-2}} > 0$ A: $x \in (-2, +\infty)$ B: $x \in (-\infty, -2)$ C: $x \in (-2, -1) \cup (1, +\infty)$ D: -1 < -1

A: $x \in (-2, +\infty)$

7. Sia N_0 il numero di abitanti di una città nel 1990. Sia N(t) il numero di abitanti dopo t anni. Supponiamo $N(t) = N_0 e^{ta}$, per un certo a > 0. Se nel 1998 la popolazione é raddoppiata,

B: $\frac{8}{\ln(2)}$

C: $\ln(2)^{1/8}$ D: $\ln(2/4)$

8. Pino e Lino sono gemelli. Un giorno Lino inizia a fumare. La capacitá respiratoria di Lino diminuisce del 10% ogni anno, quella di Pino del 2%. Dopo quanti anni la capacitá respiratoria di Lino sará la metá di quella di Pino?

 $\mathbf{A} \colon \frac{1}{\ln(98/90)}$

B: Mai

C: $\frac{\ln(2)}{\ln(98 \cdot 90)}$ D: $\frac{\ln(98/90)}{\ln(2)}$

9. Studiare qualitativamente la funzione $f(x) = \ln(1+x^3)$. (Dominio; segno e intersezioni con gli assi; limiti agli estremi del dominio; studio di f'(x), crescenza, decrescenza; eventuali massimi e minimi; grafico)