CdL di Sociologia II livello, Esame di Algebra Matriciale Appello del 9/2/2004 - versione C

Esercizio 1. Sia
$$\mathcal{B} = \left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \right\}.$$

- Stabilire se \mathcal{B} é una base di \mathbb{R}^3 ;
- se \mathcal{B} é una base di \mathbb{R}^3 , trovare il vettore delle coordinate nella base \mathcal{B} di $\begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$.

Esercizio 2. Sia
$$A = \begin{bmatrix} 1 & 2 & 1 & 2 \\ 0 & 1 & 1 & 1 \\ 2 & 4 & 2 & 4 \\ 2 & 5 & 3 & 5 \end{bmatrix}$$
.

- Si determinino dimensione, equazioni Cartesiane e una base per ker(A);
- si determinino rango(A), equazioni Cartesiane e una base per $\operatorname{span}\{A^1,A^2,A^3,A^4\}.$
- $\bullet\,$ Si studi il sistema lineare AX=b,al variare di $b\in\mathbb{R}^4,$ cioé:
 - i): si trovi lo spazio delle soluzioni del sistema omogeneo (cioé con b=0);
 - ii): si trovino equazioni Cartesiane per lo spazio dei $b \in \mathbb{R}^4$ per i quali il sistema é risolubile;
 - iii): per ogni $b \in \mathbb{R}^4$ soddisfacente tali equazioni determinare lo spazio delle soluzioni, esibendolo come traslato del nucleo $\ker(A)$.

Esercizio 3. Sia
$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
.

- trovare gli autovalori di A.
- stabilire se A é diagonalizzabile e nel caso trovare una base di \mathbb{R}^2 composta da autovettori di A.
- trovare, se esiste, una matrice B 2 × 2 invertibile tale $B^{-1}AB$ é diagonale;
- $\bullet\,$ se B é come sopra, verificare esplicitamente che $B^{-1}AB$ é diagonale.