Esame di Probabilità, distribuzioni e regressione multipla / Statistica II Prova parziale di Regressione 16.09.08

COGNOME		NOME	Matr	
Docente:	□ Prof.ssa Cazzaro	□ Prof.ssa Greselin	□ Prof.ssa Pollastri	□ Prof.ssa Zenga

Attenzione: lo studente deve fornire i diversi passaggi dei calcoli eseguiti e i commenti richiesti. Il presente foglio deve essere compilato e riconsegnato. E' vietato l'uso di calcolatrici programmabili o con funzione di agenda elettronica.

Il ministero del lavoro ha condotto un'indagine in cui sono state rilevate annualmente le seguenti variabili per il periodo 1990-2005:

 X_1 = numero degli occupati nel settore industriale (in milioni);

 X_2 = investimenti fissi lordi nell'industria (in milioni di euro);

 $X_3 = costo del lavoro per occupato (milioni di euro);$

X₄= valore aggiunto dell'industria per occupato (milioni di euro).

Si ottiene la seguente matrice di correlazione

	X_1	X_2	X_3	X_4
\mathbf{X}_{1}	1	0,1751	0,7387	0,8238
\mathbf{X}_2		1	0,2117	0,6281
X_3			1	0,7361
X_4				1

e le seguenti informazioni:

	Media	Scarto quadratico		
		medio		
\mathbf{X}_1	6,14	25,68		
\mathbf{X}_2	2,09	31,52		
\mathbf{X}_3	1,85	48,63		
X_4	3,68	44,36		

- a) Si determinino i parametri del piano interpolante a minimi quadrati $\hat{X}_1 = a + \alpha_{123} X_2 + \alpha_{132} X_3$ e se ne forniscano le relative interpretazioni.
- **b)** Si determinino i parametri della retta interpolante a minimi quadrati $\hat{X}_1 = b + \alpha_3 X_3$. Si interpreti il coefficiente angolare α_{13} trovato per questa retta e lo si confronti con il corrispondente coefficiente di regressione parziale determinato per il piano al punto a), fornendo un adeguato commento.
- c) Si valuti e si commenti la bontà di adattamento del piano determinato al punto a).
- **d**) Si supponga di aver determinato l'iperpiano $\hat{X}_1 = 1,37 + 0,18X_2 + 11,53X_3 10,87X_4$. Si valuti il miglioramento d'adattamento che si ottiene rispetto al piano di cui al punto a), sia in termini di varianza spiegata, sia in termini di varianza residua. Si commenti adeguatamente.
- e) Si calcoli il coefficiente di correlazione parziale r_{123} . Si commenti adeguatamente sia il risultato ottenuto sia la differenza con il coefficiente di correlazione grezzo r_{12} .
- f) Si calcoli il coefficiente di correlazione parziale $r_{14.23}$ e se ne verifichi numericamente il legame con uno dei risultati ottenuti al punto d).

Esame di Probabilità, distribuzioni e regressione multipla / Statistica II A Prova parziale di Probabilità 16.09.08

COGNOM	E	NOME		Matr	
Docente:	□ Prof.ssa Cazzaro □	Prof.ssa Greselin □	Prof.ssa Pollastri	□ Prof.ssa Zenga	

Attenzione: lo studente deve fornire i diversi passaggi dei calcoli eseguiti e i commenti richiesti. Il presente foglio deve essere compilato e riconsegnato. E' vietato l'uso di calcolatrici programmabili o con funzione di agenda elettronica.

ATTENZIONE: Approssimare i calcoli alla terza cifra decimale

1) Sia data la funzione

$$f(x) = \begin{cases} \frac{2(b-x)}{b^2} & per \quad 0 \le x \le 2, \\ 0 & altrove. \end{cases}$$

- a) Si determini il valore di b che rende f(x) la funzione di densità per una variabile casuale continua X.
- b) Si tracci il grafico della funzione di densità di X.
- c) Si ricavi la funzione di ripartizione di *X* e il quarto decile.
- d) Si calcoli Pr($X < 1.5 \mid X > 0.75$) e il primo momento standardizzato di X.
- 2) Il 'Crazy Boat' è un battello a due motori utilizzato per le crociere sul Tamigi. I due motori lavorano indipendentemente e il numero di piccoli guasti in una singola crociera può essere descritto da una variabile casuale di Poisson, rispettivamente, di parametro 1 per il primo motore e di media 2 per il secondo motore.
 - a) Si descrivano le caratteristiche della variabile casuale 'numero di piccoli guasti che possono occorrere in una crociera al battello 'Crazy Boat''.
 - b) Si calcoli la probabilità che non avvenga alcun guasto in una data crociera.
 - c) Partono 10 battelli identici al 'Crazy Boat'; si calcoli la probabilità che almeno 2 battelli concludano la crociera senza guasti.
- 3) Un ladro sta tentando di scassinare una casa dotata di un allarme che entra in funzione con probabilità 0,8. Quando l'allarme entra in funzione, oltre a suonare, chiama automaticamente una pattuglia della polizia, il cui tempo di arrivo segue una distribuzione esponenziale di media 4 minuti.
 - a) Dal momento in cui suona l'allarme il ladro si dilegua in un minuto. Sapendo che l'allarme è entrato in funzione, si calcoli la probabilità che il ladro venga catturato.
 - b) Si calcoli la probabilità che il ladro non venga catturato.
 - c) Sapendo che il ladro non è stato catturato, si calcoli la probabilità che l'allarme abbia suonato e che il ladro sia riuscito a dileguarsi prima dell'arrivo della polizia.
 - d) Si calcoli la probabilità che il ladro venga catturato la prima volta al quarto tentativo di furto.