Esame di Probabilità, distribuzioni e regressione multipla / Statistica II A Prova parziale di Probabilità 23.01.09

COGNOME	NOME	Matr	
Docente: □ ECOCOM (A-Le) ECOECO/ECOAZ	□ ECOCOM (Lɨ Z) ECOECO/ECOAZ	□ ECOBAN	□ ECOSTI

Attenzione: lo studente deve fornire i diversi passaggi dei calcoli eseguiti e i commenti richiesti. Il presente foglio deve essere compilato e riconsegnato. E' vietato l'uso di calcolatrici programmabili o con funzione di agenda elettronica. Approssimare i calcoli alla terza cifra decimale.

1) Sia data la seguente funzione

$$F(x) = \begin{cases} 0 & per \quad x < 1 \\ \ln x & per \quad 1 \le x < k \\ 1 & per \quad x \ge k. \end{cases}$$

- a) Si determini il valore di k tale che F(x) sia la funzione di ripartizione di una variabile casuale X.
- b) Si ricavi la mediana di X e si calcoli $Pr\{X < 2|X > 1.5\}$
- c) Si ricavi la funzione di densità di X e se ne tracci il grafico.
- 2) Un esame è composto da cinque domande indipendenti a risposta multipla, per ciascuna delle quali sono previste tre risposte. Per ciascuna domanda solo una delle risposte è esatta. Perché l'esame sia ritenuto sufficiente, occorre che siano state selezionate almeno tre risposte esatte. E' noto che l'80% degli studenti sono preparati, così che la probabilità che uno di essi selezioni la risposta esatta ad una domanda è pari a 0,9. D'altra parte, il 20% degli studenti si presenta all'esame senza aver studiato e seleziona le risposte in modo casuale.
 - a) Si calcoli la probabilità che uno studente preparato superi l'esame.
 - b) Si calcoli la probabilità che uno studente scelto a caso superi l'esame.
 - c) Sapendo che uno studente ha superato l'esame, qual è la probabilità che abbia selezionato in modo casuale le risposte?
 - d) Mediamente, quante volte deve sostenere l'esame uno studente che seleziona a caso le risposte per essere promosso? Qual è la varianza del numero di prove necessarie a superare l'esame per uno studente di questo tipo?
- 3) Una banca ha organizzato una lotteria per promuovere la vendita delle proprie azioni: il 31 dicembre di ogni anno viene sorteggiato un azionista e gli viene regalata una crociera. Si supponga che il controvalore delle azioni possedute da un azionista sia una variabile casuale Lognormale *Y* con mediana pari a 5.000 euro e valore atteso pari a 9.000 euro.
 - a) Si ricavino i parametri γ e δ^2 della distribuzione di Y.
 - b) Si calcoli la probabilità che venga sorteggiato un azionista le cui azioni hanno un controvalore inferiore a 2.000 euro.
 - c) Si calcoli la probabilità che dopo 4 anni venga sorteggiato per la prima volta un azionista le cui azioni hanno un controvalore inferiore a 2.000 euro.
 - d) Supponendo che il valore X della crociera vinta dall'azionista (espresso in migliaia di Euro) sia pari al logaritmo del controvalore delle azioni possedute Y si calcoli $Pr\{6 < X < 10\}$.

Esame di Probabilità, distribuzioni e regressione multipla / Statistica II A Prova parziale di Probabilità 23.01.09

COGNOME	NOME	Matr		
Docente: □ ECOCOM (A-Le)	□ ECOCOM (Lɨ Z)	□ ECOBAN	□ ECOSTI	
ECOECO/ECOAZ	ECOECO/ECOAZ		3 0 0	

Attenzione: lo studente deve fornire i diversi passaggi dei calcoli eseguiti e i commenti richiesti. Il presente foglio deve essere compilato e riconsegnato. E' vietato l'uso di calcolatrici programmabili o con funzione di agenda elettronica. Approssimare i calcoli alla terza cifra decimale.

- 1) Un commerciante ha comprato tre scatoloni di sciarpe: il primo ne contiene 80, gli altri due 60 ciascuno. Nel primo c'è il 40% di sciarpe blu e il restante 60% è composto in ugual misura da sciarpe rosse e gialle. Il secondo è diviso in parti uguali tra sciarpe gialle e blu, mentre il terzo contiene solo sciarpe rosse. Il commerciante sceglie a caso uno scatolone e poi da esso estrae casualmente una sciarpa.
 - a) Si calcoli la probabilità che la sciarpa estratta sia blu.
 - b) Sapendo che la sciarpa estratta è blu, da quale scatola proviene con maggiore probabilità? Dopo aver rimesso la sciarpa estratta a posto, il commerciante dispone tutte le 200 sciarpe in uno stand e successivamente ne estrae in blocco 3.
 - c) Qual è il numero medio di sciarpe gialle tra le 3 estratte?
 - d) Qual è la probabilità che nelle 3 sciarpe estratte in blocco ce ne sia una gialla?
- 2) Sia data la funzione:

$$f(x) = \begin{cases} 6x - kx^2 & 0 \le x \le 1\\ 0 & altrove \end{cases}$$

- a) Si determini il valore di k che rende f(x) una funzione di densità per una v.c. X continua.
- b) Dopo avere ricavato la funzione di ripartizione di X, si valutino le seguenti probabilità: P(0.5 < X < 0.8) e P(0.5 < X > 0.8) |X>0.5)
- c) Utilizzando anche i risultati ottenuti al punto b), si stabilisca se il valore 0,55 è plausibile per il primo quartile della distribuzione (motivare la risposta).
- d) Si calcolino i momenti centrali di ordine 1 e 2.
- 3) E' noto che tra le 8 e le 9 di sera al Pronto Soccorso di un ospedale arrivano mediamente 10 ambulanze.
 - a) Si calcoli la probabilità che tra le 8 e le 9 di sera arrivino al massimo 2 ambulanze in tale Pronto Soccorso.
 - b) L'infermiere che inizia il turno al Pronto Soccorso alle 8 di sera, quanto tempo deve mediamente attendere prima che arrivi la prima ambulanza?
 - c) Sapendo che in un altro Pronto Soccorso, tra le 8 e le 9 di sera, arrivano in media solo 4 ambulanze, si calcoli la probabilità che nella fascia oraria considerata, arrivino, in totale nelle due strutture, 3 ambulanze.
 - d) Sapendo che nel primo Pronto Soccorso, nella fascia oraria considerata, sono arrivate 3 ambulanze, si calcoli la probabilità che complessivamente nelle due strutture siano arrivate, tra le 8 e le 9 di sera, almeno 5 ambulanze.

Esame di Probabilità, distribuzioni e regressione multipla / Statistica II A Prova parziale di Regressione 23.01.09

COGNOME		NOME	Matr		
Docente: □	ECOCOM (A-Le)	□ ECOCOM (Li Z)	□ ECOBAN	□ ECOSTI	
	ECOECO/ECOAZ	ECOECO/ECOAZ			

Attenzione: lo studente deve fornire i diversi passaggi dei calcoli eseguiti e i commenti richiesti. Il presente foglio deve essere compilato e riconsegnato. E' vietato l'uso di calcolatrici programmabili o con funzione di agenda elettronica. Approssimare i calcoli alla terza cifra decimale.

Una società di analisi di mercato ha raccolto i dati riguardanti alcune caratteristiche di 10 tipologie di detersivo per lavatrice in polvere.

Le variabili prese in esame sono:

 $X_1 = \text{prezzo al pubblico (in } \in \text{)};$

 X_2 = prezzo effettuato dal fornitore (in \in);

 X_3 = Resa del detersivo (Kg di bucato con ogni misurino).

 X_4 = Numero di misurini di ogni confezione;

I risultati delle rilevazioni sono riportati nella seguente tabella:

X_1	X_2	X_3	X_4
5,00	4,05	1,60	45
7,35	5,59	2,10	27
7,99	5,99	1,70	27
11,09	6,65	1,80	32
7,99	5,19	2,00	23
2,69	2,29	1,50	18
4,45	3,12	1,40	27
15,90	11,93	1,75	45
12,95	10,36	1,85	40
8,55	7,70	1,45	70

Utilizzando i seguenti risultati:

	Media	Varianza		
X_1	8,40	14,54	$\sum X_1 X_2 = 634,05$	$\sum X_2 X_3 = 109,75$
X_2	6,29	8,33	$\sum X_1 X_3 = 147,41$	$\sum X_2 X_4 = 2442,19$
X_3	1,72	0,05	$\sum X_1 X_4 = 3178,40$	$\sum X_3 X_4 = 597,25$
X_4	35,40	208,24		 3 4 ,

- a) Si determinino e si commentino i parametri della retta ai minimi quadrati che spiega il prezzo al pubblico (X_1) in funzione del numero di misurini per ogni confezione (X_4) . Valutando l'adattamento della retta ai dati, si calcoli la varianza spiegata e la varianza residua della retta.
- b) Si confronti il grado di miglioramento in termini di varianza residua che si otterrebbe aggiungendo al modello della retta la variabile X_2 oppure la variabile X_3 .
- c) Si scriva l'equazione del piano a minimi quadrati individuato al punto b) avendo scelto tra X_2 e X_3 la migliore esplicativa. Si interpretino i parametri del piano interpolante.
- d) Si calcolino i coefficienti di correlazione r_{12} e $r_{12.3}$ e alla luce dei risultati numerici ottenuti, si interpreti il legame tra la variabile X_1 e la variabile X_2 .
- e) Si calcoli il coefficiente di correlazione $r_{12.34}$ e si deduca la varianza spiegata dall'iperpiano a minimi quadrati: $X_1 = a + \alpha_{12.34} X_2 + \alpha_{13.24} X_3 + \alpha_{14.23} X_4$.

Esame di Probabilità, distribuzioni e regressione multipla / Statistica II A Prova parziale di Regressione 23.01.09

COGNOME	NOME	Matr		
Docente: □ ECOCOM (A-Le)	□ ECOCOM (Li Z)	□ ECOBAN	□ ECOSTI	
ECOECO/ECOAZ	ECOECO/ECOAZ			

Attenzione: lo studente deve fornire i diversi passaggi dei calcoli eseguiti e i commenti richiesti. Il presente foglio deve essere compilato e riconsegnato. E' vietato l'uso di calcolatrici programmabili o con funzione di agenda elettronica. Approssimare i calcoli alla terza cifra decimale.

Un ufficio studi ha rilevato su 10 aziende le seguenti variabili:

 X_1 = tempo totale in cassa integrazione dei dipendenti dell'azienda (espresso in giorni);

 X_2 = fatturato dell'azienda (espresso in migliaia di Euro);

 X_3 = numero di dipendenti;

X₄ = tempo di attività dell'azienda (espresso in anni).

Si ottiene la seguente matrice di correlazione

	X_1	X_2	X ₃	X ₄
\mathbf{X}_{1}	1			
$\mathbf{X_2}$	-0,751	1		
X_3	-0,228	0,763	1	
X_4	-0,139	0,375	0,173	1

e le seguenti informazioni:

	Media	Scarto quadratico
		medio
$\mathbf{X_1}$	32,583	45,851
$\mathbf{X_2}$	87,175	44,124
X_3	132,867	33,289
X_4	13,852	11,553

- a) Si determinino i parametri della retta interpolante a minimi quadrati $\hat{X}_1 = a + \alpha_{12} X_2$ e se ne forniscano le relative interpretazioni.
- b) Si determinino i parametri del piano interpolante a minimi quadrati $\hat{X}_1 = b + \alpha_{12.3} X_2 + \alpha_{13.2} X_3$ e se ne forniscano le relative interpretazioni. Si commenti inoltre la differenza tra α_{12} e $\alpha_{12.3}$.
- c) Si valuti e si commenti la bontà di adattamento del piano determinato al punto b).
- d) Si supponga di aver determinato l'iperpiano $\hat{X}_1 = 12,8468 1,6562X_2 + 1,4469X_3 1,1081X_4$. Si valuti il miglioramento d'adattamento che si ottiene rispetto al piano di cui al punto b), sia in termini di varianza spiegata, sia in termini di varianza residua. Si commenti adeguatamente.
- e) Si calcolino e si commentino i coefficienti di correlazione parziali $r_{12.3}$ e $r_{12.4}$. Si commenti inoltre la differenza tra r_{12} e $r_{12.3}$.
- f) Si valuti il quadrato del coefficiente di correlazione parziale $r_{14/3}$.