COGNOME											${f A}$
NOME											
N. MATRICO	LA				La	urea		Dip	loma	a 🗀	Anno di Corso 1234FC

Questo foglio DEVE essere consegnato alla fine della prova. Utilizzare inoltre per lo svolgimento del tema solo fogli timbrati.

ESAME DI ALGEBRA LINEARE (semestrale)

Milano, 14 aprile 2003

1) Data la funzione

$$f(x,y) = \log\left(\frac{4x - x^2 - 3}{\sqrt{4 - |x| - y}}\right),$$

determinare e rappresentare graficamente il suo campo di esistenza, specificandone l'insieme dei punti interni e di frontiera. Dire se si tratta di un insieme limitato. Calcolare poi, nel caso esistano, le derivate parziali di f in (2,1).

2) Si trovi una base per lo spazio vettoriale costituito dalle soluzioni del sistema lineare

$$\begin{cases} x + y - 3z + t = 0 \\ -x + 2y + 3t = 0 \\ 3x - 3y - 3z - 5t = 0. \end{cases}$$

3) Studiare la diagonalizzabilità della matrice

$$B = \left(\begin{array}{ccc} 10 & 60 & 24 \\ 0 & -2 & 0 \\ -4 & -20 & -10 \end{array}\right).$$

Dire poi se esistono tre autovettori di B di norma 1 linearmente indipendenti (non è richiesto di determinarli) .

4) Studiare il segno della forma quadratica $q: \mathbb{R}^4 \longrightarrow \mathbb{R}$

$$q(x_1, x_2, x_3, x_4) = x_1^2 + 2x_1x_4 + 2x_2x_3 + x_3^2$$

- 5) Dare la definizione di trasformazione lineare dello spazio \mathbb{R}^n nello spazio \mathbb{R}^m . Specificare poi cosa si intende per nucleo e per immagine di una trasformazione lineare, indicando anche la relazione che sussiste tra le loro dimensioni. Proporre infine un esempio di trasformazione lineare.
- 6) Enunciare e dimostrare la disuguaglianza di Cauchy-Schwarz.