MATEMATICA II

Prima prova parziale

30 novembre **2005**

Cognome, nome, numero di matricola e anno di corso:

1. Si determinino gli estremi assoluti della funzione $h: \mathbb{R}^2 \to \mathbb{R}$, definita da

$$h(x,y) = -2x^3 - x^2 - y^2 + 5,$$

vincolati al rettangolo R di vertici (0,1), (-1,1), (-1,-1) e (0,-1).

2. Si determinino gli eventuali estremi della funzione $k: \mathbb{R}^2 \to \mathbb{R}$, definita da

$$k(x,y) = x^2 y,$$

vincolati all'ellisse di equazione $x^2 + 4y^2 = 1$.

3. Si determinino gli eventuali estremi (liberi) della funzione $g: \mathbf{R}^2 \setminus \{(0,0)\} \to \mathbf{R}$, definita da

$$g(x,y) = \frac{xy}{x^2 + y^2}.$$

4. Si consideri la funzione $f: \mathbf{R}^2 \to \mathbf{R}$, definita da

$$f(\mathbf{x}) = |\mathbf{x}| \arctan |\mathbf{x}|,$$

dove $\mathbf{x} = (x_1, x_2)$ indica un vettore di \mathbf{R}^2 e $|\mathbf{x}|$ la sua norma euclidea.

- (i) Si calcolino $\nabla f(\mathbf{x})$ e $D_{\mathbf{v}} f(\mathbf{x})$, dove $\mathbf{v} = (-1/\sqrt{2}, 1/\sqrt{2})$. Si scriva l'equazione del piano tangente al grafico di f nel punto $(1/\sqrt{2}, 1/\sqrt{2}, \pi/4)$.
- (ii) Si disegni il profilo di f e si determinino gli estremi liberi della funzione f.
- (iii) Supponendo di sapere che f ha derivate parziali seconde continue, si scriva la formula di Taylor di f centrata in (0,0), arrestata al secondo ordine, con resto in forma di Peano.
- (iv) Si calcoli $\nabla(f\circ F)(s,t)$, dove $F:\mathbf{R}^2\to\mathbf{R}^2$ è definita da $F(s,t)=(\mathbf{e}^t,\mathbf{e}^s)$, giustificandone preliminarmente l'esistenza.