COGNOME										${f A}$
NOME										
N. MATRICOL	A				La	urea		Dip	loma	 Anno di Corso 1234 FC

Questo foglio DEVE essere consegnato alla fine della prova. Utilizzare inoltre per lo svolgimento del tema solo fogli timbrati.

ESAME DI MATEMATICA II Milano, 21 settembre 2004

1) Si scriva la formula di Taylor della funzione

$$F(x,y) = 2^{x^2y^3},$$

arrestata al secondo ordine, con punto iniziale (0,1). Si indichi poi il differenziale di F in (0,1).

2) Si determinino eventuali estremanti relativi, con i rispettivi valori, della funzione

$$f(x,y) = x^6 + y^6 - 6xy.$$

3) Si calcoli l'integrale doppio

$$\iint_{S} (y+1)\sqrt{x^2+y^2} \, dx dy,$$

dove $S = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 9, x^2 - y^2 \ge 0\}.$

4) Si determini la soluzione della seguente equazione alle differenze

$$z_{n+2} - 9z_{n+1} + 8z_n = 12 \cdot 4^n - 28,$$

che soddisfi le condizioni iniziali $z_0=2$ e $z_1=10$.

- 5) Dare la definizione di funzione differenziabile in un vettore x_0 interno al suo campo di esistenza.
- 6) Enunciare e dimostrare una condizione sufficiente affinché un vettore stazionario non sia estremante.