UNIVERSITÀ CATTOLICA DEL SACRO CUORE

FACOLTÀ DI ECONOMIA LAUREA IN ECONOMIA E COMMERCIO

Prova scritta di STATISTICA del 04.02.2005 (Tema 216)

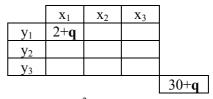
Svolgere per esteso sui fogli quadrettati, indicando formule, calcoli, risultati e commenti.

1. Con riferimento al numero dei componenti delle 50.000 famiglie di una certa regione si sono calcolati i seguenti indici di posizione: media geometrica = $2.7 + \mathbf{q}/10$; media quadratica = $3.8 + \mathbf{q}/10$. Calcolare gli estremi dell'intervallo entro il quale si troverà il numero di abitanti della regione.

2. Data la seguente v.s. X

Xi	1	2	3
n _i	10	15+q	4

- 2.1 Calcolare il valore di Δ_2 e costruire la tabella di massima variabilità nell'intervallo (1,10).
- 2.2 Calcolare la mediana di X.
- **3**. Le seguenti tabelle riportano la distribuzione giornaliera del numero di camere occupate (*X*) nei 30 giorni dei mesi di aprile e settembre dello scorso anno in un albergo di una località di villeggiatura:


aprile	x_{i}	5	10	15	28	
n_i		8	8	4+q	10 -q	

settembre	x_{i}	10	15	25	
	n_i	12 -q	10+ q	8	

- 3.1 Sapendo che il numero di camere dell'albergo è 36, si confrontino le due distribuzioni con opportuni indici di posizione e di variabilità.
- 3.2 Calcolare inoltre la media generale e la varianza generale della variabile X nei due mesi.
- 4. Completare le seguenti tabelle in modo che siano soddisfatte le condizioni sotto riportate:

		\mathbf{x}_1	\mathbf{x}_2	X3	
I	y_1	6+ q			
	y_2	0			
ĺ	y ₃	0			
					30+ q
	••2	,	1 1	(T/T)	

$$\chi^2_{normalizzato} = 1$$
, $M(Y) = y_2$

$$\chi^2 = 0$$
, M(Y)= y_2

5. Il seguente prospetto riporta le spese giornaliere sostenute da 10 clienti di una agenzia di viaggi, ripartite in "spese per pernottamento" (*X*) e "spese per extra" (*Y*).

x_i	106.5	148.5	105.3	51	112	137	91	96	80	65
y_i	23.1	43.1	21.5	7+(q/10)	26.8	34.6	26.6	30.2	18	10.5

5.1 Si calcolino, secondo il principio dei minimi quadrati, i parametri e l'indice di adattamento dei seguenti modelli

I)
$$Y^* = a + bX$$
 II) $Y^* = c + d(\ln X)$

- 5.2 In base al modello migliore tra quelli stimati al punto precedente si fornisca la previsione della spesa giornaliera per extra di un cliente che spende €98.00 giornaliere per il pernottamento.
- 5.3 Si costruisca ora la variabile qualitativa Z ricodificando, nei nuovi attributi basso e alto, i valori della variabile X appartenenti agli intervalli 0-100, 100-150; si costruisca inoltre la variabile W ricodificando, negli attributi basso e alto, i valori della Y appartenenti agli intervalli 0-25, 25-50. Si ricostruisca la distribuzione congiunta di Z e W e si valuti il grado di connessione tra le due variabili.
- 6. Si consideri l'esperimento di estrazione, con ripetizione, di n palline da un'urna contenente palline rosse e bianche in proporzione p e (1-p). Sia X la v.c. n° di palline rosse estratte ed Y n° di bianche.
 - 6.1 Sapendo che M(X)=3-q/10 e M(Y)=1+q/10, determinare n e calcolare la P(X>2).
 - 6.2 Nel caso di 100+ \mathbf{q} estrazioni con reimmissione dalla stessa urna, calcolare la $P(X>70-\mathbf{q})$.

N.B. Il valore del parametro **q** verrà comunicato all'inizio della prova.