Università Cattolica del S. Cuore - Milano

LAUREA IN ECONOMIA E COMMERCIO

LAUREA IN SCIENZE STATISTICHE ED ECONOMICHE - D.U. IN STATISTICA

Prova scritta di STATISTICA del 15.6.2000 (Tema 177)

1. Da un'indagine condotta presso un centro commerciale si è costruito il seguente prospetto che riporta il numero di unità statistiche classificate secondo le variabili *X*, fascia di età, e *Y*, tipologia di consumi.

$X \setminus Y$	alimentari	audio/video	elettronica
< 20	5	14	1
20-30	8	18	24
>30	12	18	0

- 1.1 Si determinino moda ed eterogeneità delle mutabili tipologia di consumi condizionate rispetto all'età.
- 1.2 Si rappresenti graficamente la distribuzione della mutabile Y|X>30.
- 1.3 Calcolare con un opportuno indice la misura della connessione fra i due caratteri X e Y.
- 2. Un impianto industriale è costituito da due linee di produzione l_i (i = 1,2) in ciascuna delle quali vengono fabbricati due differenti prodotti a_j (j = 1,2) a lotti di 1000 pezzi consecutivi. Indicate con D_{ij} (i = 1,2; j = 1,2) le variabili che descrivono il numero di elementi difettosi realizzati nel generico lotto di produzione, la tabella seguente riporta i valori delle medie e delle varianze delle D_{ij} e nell'ultima colonna i valori delle covarianze tra le coppie di variabili D_{i1} e D_{i2} .

	a_1		a_2		
linea	$M(D_{i1})$	$Var(D_{i1})$	$M(D_{i2})$	$Var(D_{i2})$	$Cov(D_{i1}, D_{i2})$
l_1	20	1	20 + q	4.5	2
l_2	21	1	25	5	1

Si consideri ora una giornata di produzione nella quale si sono realizzati il 20% di lotti di articoli del tipo a_1 e l'80% del tipo a_2 per ciascuna linea.

- 2.1 Si calcolino media e variabilità della difettosità giornaliera della produzione globale delle linee l_1 e l_2 .
- 2.2 Considerando i risultati ottenuti al punto 2.1 indicare, commentando la scelta, quale delle due linee di produzione può ritenersi migliore.
- 3. Si riporta l'andamento della quotazione del titolo azionario K in 8 istanti temporali successivi.

t	1	2	3	4	5	6	7	8
y_t	15	13	9	12	15	18	16	15+q

- 3.1 Si dia una rappresentazione grafica della serie temporale (t, y_t) .
- 3.2 Per studiare la dipendenza di *Y*, da *t* si considerino i seguenti modelli:

I)
$$Y^* = a + bt$$
, II) $Y^{**} = c + d(t - 3)^2$.

Si calcolino, secondo il principio dei minimi quadrati, i parametri dei modelli I) e II) e i relativi indici di adattamento.

- 3.3 In base al modello ritenuto migliore si calcoli la previsione della quotazione del titolo K al tempo t = 9.
- 3.4 Dovendo investire una determinata somma all'istante temporale t = 8, si calcoli, con riferimento alla previsione fatta, la variazione percentuale del titolo K tra t = 8 e t = 9.
- 3.5 Si indichi, senza effettuare calcoli, il valore del rapporto di correlazione $\eta_{y_l}^2$ (motivando la risposta).
- 4. Siano X, Y e Z tre variabili statistiche tali che M(X) = M(Z) = 0 e si suppongano X e Z non correlate. Si dia l'espressione analitica dei coefficienti a, b, c, d, e dei seguenti modelli di regressione lineare

I)
$$Y = a + bX$$
, II) $Y = c + dX + eZ$.

5. Un gioco tra due soggetti α , β consiste nel lanciare un dado (equilibrato); α vince se il dado da lui lanciato presenta un valore superiore o pari a quello di β . Indicati con A e B gli eventi vincita dei contendenti (α e β rispettivamente) calcolare:

(a)
$$P(A)$$
 (b) $P(A-B)$; (c) $P(A \cap B)$; (d) $P(A \cup B)$.