Firma:

Università degli Studi di Milano / Bicocca - Facoltà di Economia

MATEMATICA GENERALE Modulo B Ecocomm E-O, EcoSti, EcoSoc (Prof.ssa G.Carcano)

Prova scritta del 2 febbraio 2005

Tempo a diposizione: 1 ora e 30 minuti

Per le domande numero 1-2-3-4-5-6-7:

una ed una sola delle quattro risposte è esatta; indicarla barrandola con una croce.

Ogni risposta esatta vale 3 punti; ogni risposta sbagliata o mancante vale 0 punti.

Per la domanda numero 8:

riportare lo svolgimento nello spazio bianco predisposto; il punteggio è indicato.

Totale punti disponibili (in trentesimi): 21 + 12 = 33.

Attenzione: è ammessa una sola correzione, per le domande 1-2-3-4-5-6-7; per correggere una risposta ritenuta errata, scrivere NO sopra la risposta ritenuta errata e scrivere SI sopra la risposta ritenuta giusta.

- 1. Sia $\sum_{n=0}^{\infty} a_n$ una generica serie numerica; quale delle seguenti affermazioni è vera?
 - a se $\sum_{n=0}^{+\infty} a_n$ converge, allora converge $\sum_{n=0}^{+\infty} |a_n|$;
 - b se $\sum_{n=0}^{+\infty} |a_n|$ converge, allora converge $\sum_{n=0}^{+\infty} a_n$;
 - c se $\sum_{n=0}^{+\infty} a_n$ converge, allora $\lim_{n \to +\infty} \frac{a_{n+1}}{a_n} < 1$;
 - nessuna delle altre tre risposte è giusta.
- Quale, delle seguenti funzioni, ha integrale di Riemann improprio convergente, nell'intervallo $(-\infty,0]$?

 - a e^{x^2+x} ; b e^{x^3+x} ; c e^{x^2-x} ;
- 3. Quale è l'elemento di posto (1,3) della matrice inversa di \mathbf{A} , ove $\mathbf{A} = \begin{bmatrix} -1 & 1 & 5 \\ 0 & 3 & 7 \\ 0 & 0 & -2 \end{bmatrix}$?
- c -8;
- $\lceil \overline{d} \rceil$ nessuna delle tre.
- **4.** Sia $f:[a,b] \to \mathbb{R}$; $S(f,\mathcal{P}) / s(f,\mathcal{P})$ indichi la somma superiore / inferiore di f relativa alla partizione \mathcal{P} ; quale delle seguenti affermazioni è **vera**?
 - $s(f, \mathcal{P}) < S(f, \mathcal{P});$
 - $s(f, \mathcal{P}) = S(f, \mathcal{P});$
 - $\sup_{\mathcal{D}} s(f, \mathcal{P}) = \inf_{\mathcal{D}} S(f, \mathcal{P});$

 \boxed{d} $f \text{ continua} \Rightarrow \sup_{\mathcal{P}} s(f, \mathcal{P}) = \inf_{\mathcal{P}} S(f, \mathcal{P}).$

5. Sia $F(x) = \int_0^x \frac{1}{\sqrt{1+t^2}} dx$; allora $F'(\sqrt{3}) =$ $-\int_{0} \sqrt{1+t^{2}} ax; \text{ anora } F(\sqrt{3}) =$ $\boxed{a} \quad 1; \qquad \boxed{b} \quad \frac{1}{2}; \qquad \boxed{c} \quad 0;$

nessuna delle tre.

6. $\sum_{n=1}^{+\infty} \frac{2^n}{3^n} =$

d α , con $1 < \alpha < 2$.

7. La serie di potenze $\sum_{n=1}^{+\infty} (-1)^{n-1} \frac{x^n}{n}$ è la serie di MacLaurin della funzione $a \log(1-x);$ $b e^{-x}-1;$ $c \log(1+x);$ d

d nessuna delle tre.

8.

(i) Si ricordi la definizione di rango di una matrice $\mathbf{A} \in \mathcal{M}(m \times n)$ e le principali proprietà (3 punti).

(ii) Si ricordi l'enunciato del Teorema di Rouché-Capelli (3 punti).

(iii) Si determini, al variare di $\alpha \in \mathbb{R}$, il rango della matrice $\mathbf{A} = \begin{bmatrix} 1 & 2 \\ \alpha & 4 \\ 3 & \alpha + 4 \end{bmatrix}$ (3 punti); nel caso $\alpha = 2$, si risolva il sistema $\mathbf{A}\mathbf{x} = \mathbf{b}$, ove $\mathbf{b} = \begin{bmatrix} 2 \\ 4 \\ 6 \end{bmatrix}$ (3 punti).