Firma:

Università degli Studi di Milano / Bicocca – Facoltà di Economia MATEMATICA GENERALE Modulo B Ecocomm A-D (Prof.ssa G.Carcano) Prova scritta del 2 settembre 2004

Tempo a diposizione: 1 ora e 30 minuti

Per le domande numero 1-2-3-4-5-6-7:

una ed una sola delle quattro risposte è esatta; indicarla barrandola con una croce.

Ogni risposta esatta vale 3 punti; ogni risposta sbagliata o mancante vale 0 punti.

Per la domanda numero 8:

riportare lo svolgimento nello spazio bianco predisposto; il punteggio è indicato.

Totale punti disponibili (in trentesimi): 21 + 12 = 33.

Attenzione: è ammessa una sola correzione, per le domande 1-2-3-4-5-6-7; per correggere una risposta ritenuta errata, scrivere NO sopra la risposta ritenuta errata e scrivere SI sopra la risposta ritenuta giusta.

- 1. Sia $\sum a_n$ una generica serie numerica; quale delle seguenti affermazioni è **vera**?
 - a se converge $\sum_{n=0}^{+\infty} a_n$, allora converge anche $\sum_{n=0}^{+\infty} |a_n|$;

 - $\begin{array}{ll}
 b & \sum_{n=0}^{+\infty} a_n \text{ converge se e solo se } \sum_{n=0}^{+\infty} |a_n| \text{ converge;} \\
 c & \text{se } \sum_{n=0}^{+\infty} a_n \text{ non converge, allora non converge neppure } \sum_{n=0}^{+\infty} |a_n|;
 \end{array}$
 - nessuna delle altre tre risposte è giusta.
- 2. Indichiamo con $\langle \cdot, \cdot \rangle$ il prodotto interno (o scalare) tra vettori di \mathbb{R}^n . Si considerino i vettori

 $\mathbf{x} = \begin{bmatrix} 1 \\ 3 \\ -1 \end{bmatrix}$ e $\mathbf{y} = \begin{bmatrix} \alpha \\ 2 \\ 5 \end{bmatrix} \in \mathbb{R}^3$; allora $\langle \mathbf{x}, \mathbf{y} \rangle = 0$ a se e solo se $\alpha = 0$; b se e solo se $\alpha = -1$; c per ogni $\alpha \in \mathbb{R}$; d nessuna delle altre tre risposte è giusta.

- 3. Quale è l'elemento di posto (2,3) della matrice $\mathbf{A}^T\mathbf{B}$, ove $\mathbf{A} = \begin{bmatrix} 1 & 5 \\ 2 & 7 \\ -1 & 1 \end{bmatrix}$ e $\mathbf{B} = \begin{bmatrix} 1 & 0 & -4 \\ 5 & 7 & 3 \\ 4 & -2 & 5 \end{bmatrix}$?
 - c = 0;d nessuna delle altre risposte è giusta. $a \mid \text{non esiste};$

4. Si consideri la funzione $f(x) = \begin{cases} 3x^2 & \text{se } 0 \le x \le 1 \\ -1 & \text{se } 1 < x \le \frac{3}{2}; \text{ allora il valor medio di } f \text{ nell'intervallo } [0,2] \\ 7 & \text{se } \frac{3}{2} < x \le 2 \end{cases}$

 $\overline{\text{per}}$ ché f non è continua.

- **5.** Sia $I = \int_0^1 f(x) dx$. Allora vale $\int_0^5 f(\frac{x}{5}) dx = \boxed{a} \ 10I$; $\boxed{b} \ \frac{I}{5}$; $\boxed{c} \ 5I$; $\boxed{d} \ I$.
- Si consideri il generico sistema lineare non omogeneo $\mathbf{A}\mathbf{x}=\mathbf{b},\ \mathbf{b}\neq 0;$ quale delle seguenti affermazioni è vera?
 - il sistema è sempre possibile;
 - bil sistema è sempre determinato;
 - se il sistema ha una soluzione, allora ne ha infinite;
 - il sistema non può avere la soluzione nulla. d
- 7. Quale delle seguenti funzioni ha integrale improprio convergente, nell'intervallo $(-\infty, 0]$?
- $\boxed{a} \quad \frac{e^x}{-1+x}; \qquad \boxed{b} \quad \frac{e^{-x}}{-1+x}; \qquad \boxed{c} \quad \frac{e^{|x|}}{-1+x}; \qquad \boxed{d} \text{ nessuna delle tre.}$

8. (i)	Si enuncino almeno due criteri sufficienti per la convergenza di una serie numerica (2 punti); si enunci e dimostri la condizione necessaria di convergenza per una serie numerica (4 punti). Criteri:
	Condizione necessaria di convergenza:

(ii) Si determini il raggio di convergenza della serie di potenze $\sum_{n=0}^{+\infty} \left(\frac{x+2}{3}\right)^n$ (4 punti); si specifichi se, negli estremi dell'intervallo di convergenza, la serie converge oppure no (2 punti).