Università Cattolica del S. Cuore - Milano

FACOLTÀ DI ECONOMIA LAUREA IN ECONOMIA E COMMERCIO

Prova scritta di STATISTICA del 8.9.2005 (Tema 221)

Svolgere per esteso la prova sui fogli quadrettati, indicando formule, calcoli, risultati e commenti.

1. Nel prospetto seguente sono riportate, con riferimento ai redditi di *n* soggetti (variabile *X*), le classi di rilevazione e le rispettive densità di frequenza.

c_{i-1} - $ c_i $	d_i
10- 15	4+q
15- 20	4
20- 39	3

- 1.1 Si ricostruiscano le distribuzioni delle frequenze assolute e cumulate della variabile X e si dia una opportuna rappresentazione grafica di X e della sua funzione di ripartizione F(x).
- 1.2 Si calcolino media e mediana di X.
- 2. Nella seguente tabella è riportata la distribuzione delle frequenze congiunte del numero di pasti (*P*) consumati nell'arco di una settimana da 100 studenti distinti per genere (*G*).

G P	1	2	3	4
maschi	15	15 -q	15+ q	15
femmine	5	15	15	5

- 2.1 Confrontare con opportuni indici di posizione e di variabilità le distribuzioni P|G=maschio e P|G=femmina, commentando i risultati ottenuti.
- 2.2 Si calcoli una misura della connessione fra le variabili G e P.
- 3. In un'indagine campionaria, effettuata con riferimento a due caratteri quantitativi X e Y, sono state rilevate le seguenti coppie di valori (x_i, y_i) , i = 1, 2, ..., 8:

$$(5; 16)$$
 $(10; 16-(\mathbf{q}/10))$ $(15; 18)$ $(5; 18)$ $(10; 16+(\mathbf{q}/10))$ $(15; 15)$ $(10; 16)$ $(15; 12)$.

- 3.1 Si dia una rappresentazione grafica delle coppie di punti.
- 3.2 Si calcolino, secondo il principio dei minimi quadrati, i parametri della retta $Y^* = a + bX$ ed il relativo indice di adattamento.
- 3.3 Si riporti sul grafico precedente l'andamento della funzione di regressione.
- 3.4 Si confronti l'adattamento della retta con quello della funzione di regressione e si calcoli il valore di η_{YX}^2
- 4. Con riferimento ad *n* unità statistiche si sono raccolti alcuni dati nella seguente tabella doppia:

$X \setminus Y$	y_1	y_2	<i>y</i> ₃
x_1	20+ q	а	b
x_2	С	d	15- q
x_3	e	f	g

- 4.1 Determinare i valori (interi) da assegnare alle costanti a, b, c, d, e, f sapendo che i valori degli indici di connessione χ^2 assoluto e normalizzato sono rispettivamente pari a 90 e 1.
- 4.2 Determinare i valori da assegnare alle costanti a, b, c, d, e, f in modo tale che $\chi^2 = 0$.
- 4.3 Determinare i valori da assegnare a tali costanti in modo che $\rho^2 = 0$ per qualsiasi terna di valori x_i .
- 5. Si consideri l'esperimento di estrazione senza reimmissione di 5 carte da un mazzo di 52 carte
 - 5.1 calcolare la probabilità, P(A), di ottenere 3 carte di quadri (e le restanti di seme diverso);
 - 5.2 calcolare la probabilità, P(B), di ottenere 3 carte dello stesso seme (\clubsuit o \spadesuit o \blacktriangledown o \spadesuit);
 - 5.3 calcolare la probabilità che esattamente 3 delle 5 carte siano figure (J, Q, K) rosse;
 - 5.4 calcolare $P(A \cap B)$ e $P(A \cup B)$.

N.B. Il valore del parametro q verrà comunicato all'inizio della prova