Esame di Statistica II/B - 19.02.05

COGNOME NON	1E	MATRICOLA
-------------	-----------	-----------

1) Una compagnia assicurativa ritiene che il numero annuo X di infortuni per assicurato si distribuisca secondo una legge di Poisson di parametro λ incognito:

$$p(x; \lambda) = \frac{e^{-\lambda} \lambda^x}{x!}$$
 $x = 0, 1, 2, ...; \lambda > 0.$

Avendo a disposizione un campione casuale $(x_1, x_2, ..., x_n)$ di osservazioni da X,

- a) ricavare lo stimatore T_I del parametro λ con il metodo della massima verosimiglianza e verificarne correttezza e consistenza quadratica;
- b) confrontare l'errore quadratico medio di T_1 con il limite inferiore di Rao-Cramèr per la varianza di stimatori non distorti di λ , commentando il risultato;
- c) determinare con il metodo della massima verosimiglianza lo stimatore T_2 per la funzione parametrica $\tau(\lambda) = Prob(X = 0)$.
- 2) Uno studio americano condotto negli anni sessanta su un campione casuale di studenti delle scuole superiori e sui rispettivi genitori ha evidenziato la seguente distribuzione di preferenze politiche:

	Preferenza politica dello studente		
Preferenza politica del genitore	Democratico	Conservatore	Indipendente
Democratico	424	167	325
Conservatore	193	122	180
Indipendente	180	106	155

- a) Si può ritenere ($\alpha = 0.05$) che le preferenze politiche degli studenti fossero indipendenti da quelle dei rispettivi genitori?
- b) Indicate con p_S e con p_G le proporzioni di "Democratici" rispettivamente fra gli studenti e fra i genitori, costruire un intervallo di confidenza asintotico per la differenza $p_S p_G$ al livello di confidenza del 98%.
- 3) Un'indagine condotta dal Ministero dell'Agricoltura ha analizzato la relazione esistente fra il numero annuo di incendi (variabile *X*, in *migliaia*) e la corrispondente superficie boschiva distrutta (variabile *Y*, in *migliaia di ettari*) relativamente agli 8 anni che vanno dal 1986 al 1993. Considerando le seguenti informazioni:

$$\sum x_i = 104$$
; $\sum y_i = 1117$; $\sum x_i y_i = 15366$; $\sum x_i^2 = 1428$; $\sum y_i^2 = 172005$

e volendo applicare il modello lineare (caso A): $\hat{Y} = \beta_0 + \beta_1 x$,

- a) costruire un intervallo di confidenza al 98% per σ^2 ;
- b) verificare l'ipotesi nulla H_0 : $\beta_1 = 11$ contro l'alternativa H_1 : $\beta_1 > 11$, volendo commettere l'errore di prima specie con probabilità dell'1%;
- c) costruire un intervallo di confidenza al 95% per la superficie boschiva distrutta in un annata in cui si verifichino 12'000 incendi.