Esame di Probabilità, distribuzioni e regressione multipla / Statistica II Prova parziale di Probabilità 14.12.06

COGNOME		NOME	Matr	
Docente:	□ Prof.ssa Pollastri	□ Prof.ssa Greselin	□ Prof.ssa Zenga	□ Prof.ssa Fiori
presente fog	: lo studente deve fornir glio deve essere compila one di agenda elettronica	to e riconsegnato. E' vie	<u> </u>	
Domanda o	di teoria (da svolgere su	ıl primo foglio quadret	tato e riconsegnare e	entro 20 minuti).

- 1) Un robot è dotato di tre dispositivi di controllo, indicati con A, B e Z, le cui probabilità di guasto sono rispettivamente pari a 0.05; 0.09 e 0.12. I guasti dei tre dispositivi sono eventi globalmente indipendenti. Il robot smette di funzionare se i dispositivi A e B sono contemporaneamente guasti *oppure* se si guasta il dispositivo Z.
 - a) Qual è la probabilità che un robot smetta di funzionare? Un sistema produttivo aziendale è formato da dieci robot del tipo sopra descritto, che si guastano in modo indipendente l'uno dall'altro.
 - b) Si determini la probabilità che nel sistema produttivo funzionino almeno otto robot.
 - c) Si calcoli la probabilità che in un sistema produttivo il primo robot non funzionante sia il terzo.
- 2) Un variabile casuale continua X è caratterizzata dalla seguente funzione di ripartizione:

$$F(x) = \begin{cases} 0 & x < -1 \\ \frac{x+1}{k} & -1 \le x \le 2 \\ 1 & x > 2 \end{cases}$$

- a) Dopo avere dedotto la corrispondente funzione di densità f(x), si ricavi il valore di k.
- b) Si rappresentino graficamente f(x) e F(x).
- c) Si riconosca la variabile casuale *X* fra quelle note studiate e se ne ricavino il valore atteso e la varianza.
- d) Si determini il 90esimo percentile e lo si indichi sul grafico di F(x).
- 3) La durata di funzionamento in ore di un macchinario è descritta da una v.c. X con distribuzione esponenziale di parametro $\theta = 0.001$.
 - a) Si valutino la durata attesa e quella mediana del macchinario, commentando i risultati.
 - b) Si determini la probabilità che la durata del macchinario sia superiore a 200 ore.
 - Nell'ipotesi che il macchinario sia già funzionante da 800 ore, si calcoli la probabilità che funzioni per altre 200 ore e la si confronti con la probabilità ottenuta al punto b). <u>Si enunci e si dimostri</u> la proprietà teorica della v.c. esponenziale che giustifica il risultato ottenuto.